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ABSTRACT INTRODUCTION 

In this paper we consider the 
dynamic routing of unmanned aerial 
vehicles (UAVs) currently in operational use 
with the US Air Force. Dynamic vehicle 
routing problems (VRP) have always been 
challenging, and the airborne version of the 
VRP adds dimensions and difficulties not 
present in typical ground-based applications. 
Previous UAV routing work has focused 
primarily on static, pre-planned situations; 
however, scheduling military operations, 
which are often ad-hoc, drives the need for a 
dynamic route solver that can respond to 
rapidly evolving problem constraints. With 
these considerations in mind, we examine 
the use of a Java-encoded metaheuristic to 
solve these dynamic routing problems, 
explore its operation with several general 
problem classes, and look at the advantages 
it provides in sample UAV routing 
problems. The end routine provides routing 
information for a UAV virtual battlespace 
simulation and allows dynamic routing of 
operational missions. 

Unmanned Aerial Vehicle (UAV) 
routing is a complex problem, and earlier 
work on the subject examined essentially 
predefined static scenarios. A tabu search 
coupled with a Monte Carlo Simulation was 
used to find the minimum number of 
vehicles required based on stochastic 
survival probabilities (Sisson 1997). 
Stochastic simulations involved selecting the 
best predefined route based on expected 
values of service, wind, and survival 
variables (Ryan 1998). This produced a 
robust tour which could then be used to 
mission plan a given set of targets with 
unknown threat and wind conditions at the 
time of mission execution. This approach is 
wholly appropriate for an autonomous UAV 
which is preprogrammed to execute a 
planned mission. While this gives a good 
starting point for a route schedule, it does 
not incorporate the latest information— 
information that can rapidly change. 

The continuously evolving mission is 
a   primary   concern,    especially   to   the 



operators of a long-duration, unmanned 
aerial vehicle such as the US Air Force's 
RQ-1A Predator. An ability to dynamically 
adapt to the latest target update is 
fundamental to successful military 
operations. Therefore, we seek to take 
maximum advantage of current information 
(winds, target locations, threats, priorities) to 
dynamically generate and update routes for 
real-time use. This requires a method fast 
enough to be operationally effective, robust 
enough to handle a wide scope of problems, 
and reliable enough to provide optimal (or 
near optimal) solutions. 

Most routing problems are NP-hard 
combinatorial problems for which no 
polynomially bounded algorithm has been 
found (Bodin et al. 1983). Convergent 
algorithms can rarely solve large problems 
consisting of more than 50 customers and 
often require relatively few side constraints 
(Gendreau et al. 1997). Unfortunately, real- 
world problems, such as UAV routing, 
possess many side constraints such as route 
and vehicle capacities, route length 
restrictions, and time windows in a sizeable 
network. Additionally, this network may be 
comprised of multiple depots and 
heterogeneous vehicles. Finding optimal 
solutions to these types of problems by 
using techniques such as branch and bound 
or dynamic programming is currently not 
practical. 

Several heuristic approaches have 
been used in an attempt to overcome these 
problems. Greedy algorithms, which prove 
to be very useful in simpler problems, fail to 
achieve the desired results with respect to 
solution quality. Simulated annealing (SA) 
displays large variances in computational 
time and solution quality due to the random 
nature of its search strategy (Osman 1993). 
Genetic algorithms (GAs), which are 
designed to solve numerical optimization 
problems rather than combinatorial 
optimization problems, are difficult to apply 

to vehicle routing problems (VRPs) that 
require capacity, distance, and time window 
constraints (Gendreau et al. 1997). 
Fortunately, tabu search (TS) (Glover 1989) 
provides excellent results on these types of 
problems. The tabu search heuristic uses 
adaptive memory structures as it searches 
the solution space. Moves from one solution 
to another are made in a forced and orderly 
manner, and this forced move methodology 
allows the tabu search to escape the local 
extreme points. At each iteration, the tabu 
search will select a solution from the 
neighborhood provided the new candidate 
solution is not on the tabu list. The tabu list 
is a data structure which keeps track of past 
solutions visited so that new solutions must 
be examined. Since the search must pick a 
new solution at each iteration, the items on 
the tabu list will be tabu, or off-limits, and 
the heuristic will pick the best non-tabu 
move, which may actually be a worse 
solution. This seems somewhat counter- 
intuitive, but the search will continue on to 
find unexplored areas which potentially may 
yield better overall results. A special 
instance called aspiration allows the tabu 
status of a move to be overruled if certain 
conditions are met. The tabu status will be 
overridden and the solution accepted if it is 
deemed good enough based on certain 
attractiveness thresholds. The length of time 
a solution stays on the tabu list is determined 
by the tabu list length. Based on the length 
of the tabu list, the behavior of the search 
can be significantly altered. If the list is 
shortened, intensification occurs and the 
local area will be searched more thoroughly 
as the search gravitates towards the local 
optimum. If the list is lengthened, 
diversification occurs and the search will be 
forced leave its current area to explore new 
areas further away in the solution space 
(Glover 1997). 

The literature shows TS is a robust 
approach to solving many variations of the 



VRP and dominates current studies of 
routing problems (Garcia et al. 1994, Osman 
1993, Rochat and Semet 1994, Carlton 
1995, Xu and Kelly 1996, Chiang and 
Russell 1997, Gendreau et al. 1997, 
Barbarosoglu and Ozgur 1999). Even 
certain vehicle routing methods, such as the 
sweep method and petal heuristic, are not as 
powerful as tabu search algorithms (Renaud 
etal. 1996b). 

This project explores the application 
of the reactive tabu search (RTS) 
metaheuristic to routing problems, 
specifically the vehicle routing problem with 
time windows (VRPTW). Our RTS follows 
the basic TS scheme, but differs in that it 
actively adjusts the tabu length based on the 
quality of the search, as determined by the 
number of iterations before a solution is 
revisited. In execution this project 
implements the object-oriented (00) Java 
programming language for two reasons. 
First, the OO design of software allows us to 
reuse and modify existing code and libraries 
which reduces the development time of new 
software routines to extend problems (Eckel 
1998). Second, Java programs offer a cross- 
platform compatibility which enhances 
portability. Our      Java      heuristic 
implementation follows, improves, and 
extends a MODSHvl implementation (Ryan 
1998) based on an RTS developed by Battiti 
and Tecchiolli (1994) and implemented by 
Carlton (1995). 

In this paper, first we examine a 
reactive tabu search heuristic suitable for 
solving traveling salesman and vehicle 
routing problems and provide our results 
from a Java implementation of this solver. 
We look at enhancements to the RTS, the 
verification and validation results, and 
explore how this tabu search successfully 
solves tough problems. We review past 
work and general formulation of the UAV 
routing problem. We look at our 
modifications to previous efforts and show 

how the RTS enables us to solve this 
problem in particular. Finally, we suggest 
areas for future exploration. 

REACTIVE TABU SEARCH FOR THE 
VEHICLE ROUTING PROBLEM WITH 
TIME WINDOWS 

The vehicle routing problem with 
time windows (VRPTW) is defined as 
follows. Let G = (V, A) be a graph where 
V = {v0,v,,..-.,vn}    is   the   vertex   set   and 

A = {(vl,vJ): v,.,v- e V, i* j]   is   the   arc 

set. The depot vertex vo, has m identical 
vehicles, each with a maximum load 
capacity Q and a maximum route duration 
D.  The remaining vertices v,. e V represent 

customers to be serviced, each with a non- 
negative demand qt, a service time Sj, and a 
service time window comprised of a no- 
earlier-than time e,- and a no-later-than time 
£r      The   no-earlier-than   time   window 
constraint is considered soft, i.e., an arrival 
time a, before the early time results in a wait 
time wi until e, to commence service. Each 
edge (v„ Vj) has an associated non-negative 
cost cij, interpreted as travel time fy between 
locations i and/. 

The objective of the vehicle routing 
problem with time windows (VRPTW) is to 
determine a set of m vehicle routes starting 
and ending at the depot, such that each 
customer is visited exactly once within its 
time window, the total demand of any 
vehicle route does not exceed Q, the 
duration of any vehicle route does not 
exceed D, and the total cost of all routes is 
minimized. When only one vehicle is 
available and Q, D, d, and li are non- 

binding constraints, the problem reduces to a 
traveling salesman problem (Renaud et al. 
1996a). 

A tour is defined by the order in 
which the n customers are served by the m 
vehicles.   In our heuristic, we represent the 



problem as an ordered list of the sequence of 
customers   and   vehicles,   or   disjunctive 

graph, as shown in Figure 1. 

T(d) = 

0              12              3              4              5              6 7 8 

0    ►{j') ^2") •   5    ^3^) ^")    6   - —   7   — —   8 

m      Vehicle Nodes 

( n j   Customer Nodes 

Figure 1. Disjunctive Graph Notation 

The first and last positions (0 and n 
+ m) in this sequence represent the initial 
depot/vehicle and an additional terminal 
depot required to close the graph. These 
two nodes are fixed and will not move 
during the search. Initially, the customers 
occupy positions between 1 and n and the 

additional vehicles occupy the remaining 
positions between n + 1 and n + m - 1 as 
shown in Figure 2. During the search, 
customers and vehicles will be interspersed, 
and unused vehicles will occupy positions 
between the last serviced customer and the 
final depot. 

T(d). <D-®- 
n n + 1 

 / fl  J *n + 1  ► 

m       Vehicle Nodes 

( n j    Customer Nodes 

Figure 2. Initial Tour Sequence 

n + m - 1     n + m 

n +m 
-1 

OBJECTIVE FUNCTION 

For, the generic VRPTW, we seek to 
minimize travel costs ci} along the selected 

arcs identified by Xy = 1. This is given by 

minimize Zf (0 = Z Z cüxu      ( l ) 
j   • 

where 

X = (Xjj)eS,  ^e{0,l}   V i,j. 

Full   enumeration   of   all   constraints   is 
available in Appendix A. 

Penalized Objective Function 

A major advantage of our method is 
that it effectively explores the solution space 
by considering both feasible and infeasible 
solutions.   First, instead of being restricted 



only to feasible regions, our RTS can 
traverse regions of infeasibility to include 
starting with an infeasible initial solution. 
Second, the infeasible solutions generated 
may be used in real world applications with 
flexible constraints. For instance, an 
infeasible solution that produces superb 
overall results may become feasible with the 
relaxation of a constraint controlled by the 
decision-maker. Such a case occurred with 
a delivery problem solved by Rochat and 
Semet (1994). Since very few real-world 
constraints are absolutely hard, these 
infeasible solutions may represent some 
difficult route selection choices that 
managers may face when trying to balance 
competing criteria. 

A solution is infeasible if it violates a 
time window, load capacity, or duration 
constraint. Constraint violations include 
missed time windows TW and excess vehicle 
load capacity LD defined as 

TW = £[max(0,a,. -^,.)] + ]T[max(0,a,. -£>,.)] 
i i 

and 

LD = Yt[max(0,q.-Q.)] 
i 

respectively. Each constraint violation is 
scaled by a corresponding penalty factor, 
PJW and pLD, giving the penalized 

objective function as 

min Z(t) = Zf (t)+pLDLD + pmTW   ( 2 ) 

where Zj(t) is the original objective function 
given by (1). If the solution is feasible, then 
Zj{i) and Z(t) are equivalent. Otherwise, Z(t) 
will include non-zero penalty terms. 

Adjusting Reactive Penalty Coefficients 

The penalty factors should be large 
enough to separate the infeasible and 
feasible regions of the solution space so that 
infeasible solutions do not dominate feasible 
solutions. The penalty factors should also 
be small enough to allow consideration of 
infeasible solutions. Appropriate penalty 
values can be very difficult to calculate 
(Petridis et al. 1998), so our implementation 
allows for self-adjusting penalty values in 
addition to constant user-set penalty values. 

When self-adjusting, the value of the 
penalty   coefficients    pLD   and   pm    are 

independently adjusted every five iterations 
as proposed by Gendreau et al. (1996) using 
the relationship 

PTW ~ PTW ' ^ 

PLD=PLD-
25 

where tm is the number of time window 
infeasible solutions among the last ten 
solutions and tLD is the number of capacity 
infeasible solutions among the last ten 
solutions. If all ten previous solutions are 
feasible, the current p is multiplied by l/2. 
If all ten previous solutions are infeasible, 
the current p is multiplied by 2. 
Intermediate numbers of infeasible solutions 
yield multiplicative factors between x/2 and 
2. The penalty values are arbitrarily limited 
to the closed interval [0.1, 10200], a range 
easily represented by Java. This prevents 
the penalties from being rounded by Java to 
unadjustable zero or infinity values. In the 
reactive penalty scheme, we arbitrarily set 
both penalty values initially to 1000. 

The reactive penalties provide a 
measure of trajectory control into and out of 
feasible regions based on the collective 
feasibility of the previous solutions.   When 



many successive solutions are feasible, the 
lowered penalties do not strongly discourage 
movement to an infeasible solution. 
Successive infeasible solutions drive the 
penalties higher, putting increasingly greater 
emphasis on finding a feasible solution. 

Initial Solution 

An initial solution, which may or 
may not be feasible, is arbitrarily 
constructed. We employ three options for 
arranging this initial solution—the first is a 
listed ordering, the second is based on the 
time window midpoint, and the third is 
based on a randomized ordering. All three 
methods arbitrarily construct a solution by 
assigning all customers to one vehicle. 

The list ordered tour method (LOT) 
simply assigns customers to the vehicle in 
the order that they are listed in the data set. 
The ordered starting tour (OST) method 
generates a starting solution by sorting the 
customers based upon increasing time 
window midpoint values while enforcing the 
time window feasibility conditions. The 
time window midpoint for the customer / is 
defined as halfway between e. and £r 

The random starting tour (RST) 
method randomly reorders the sequential 
starting   list   of  customers   to   provide   a 

different starting point. Since the tabu 
search is a neighborhood search, the initial 
starting solution will influence the 
progression     of     the     search. Our 
experimentation suggests that the reactive 
tabu search is robust and relatively 
insensitive to the initial tour. 

Neighborhood Structure 

Our solution neighborhood is the set 
of tours immediately reachable from the 
current solution with a single 3-opt move. 
The 3-opt move removes three edges and 
replaces them with three new edges in a way 
that moves one vertex to another location in 
the tour sequence. From the disjunctive 
graph formulation, the solution 
neighborhood is examined with incremental 
swap moves and updated with an insertion 
move. A swap move exchanges the position 
of two adjacent nodes with a 3-opt move as 
shown in Figure 3. An insertion move 
relocates a specific customer at location i 
forwards or backwards in the tour by a 
number of steps called the insertion depth d. 
In our implementation, an insertion is 
executed as a series of sequential swap 
moves. 

Initial Sequence before Swap 

CD- 
O--0 

D 

Updated Sequence after Swap 

0 o 
 ►      Arcs affected by the swap 

(      J      Nodes affected by the swap 

Figure 3. Adjacent 3-Opt Swap Move 



This move type yields a staggering 
(« + m - 1)! possible solution permutations 
—a relatively simple 25 customer, 5 vehicle 
problem has 8.842 x 1030 possible solutions. 
To reduce the neighborhood size, moves 
which result in a redundant tour are 
prohibited. Additionally, strong time 
window feasibility is enforced (Carlton 
1995). 

Strong time window infeasible states 
occur between nodes i and j whenever a 
vehicle leaving node / at departure time dt 

can never arrive at nodey within the required 
time window. Specifically, node j is strong 
time window infeasible with respect to node 
i if 

di +tij >*j v d, =ai+si, a,. € [eit£i]. 

Weak time window infeasible states occur 
when only some departure times preclude a 
timely arrival at the following node, i.e., 

V d, = a{ + s,, 

ax <t,t& [«,.,*,.). 

Unlike strong time window infeasible tours, 
weak time window infeasible tours are 
evaluated in the search since insertion 
moves can ultimately reduce the amount of 
infeasibility in the overall tour (Carlton 
1995). Past vehicle routing problem 
research indicates that feasible solutions 
may be isolated or disjoint from each other 
in the solution space, so in order to 
effectively search the solution space, the 
method must investigate and perhaps accept 
infeasible solutions. This search of the 
infeasible region is facilitated by our use of 
penalty factors. 

Tabu Moves 

Tabu search uses a memory structure 
to determine if a particular tour has already 
been visited by examining its attributes. The 
examination must efficiently and reliably 
store and identify solution attributes 
previously altered during the search. We 
employ an (n + 1) x (n + 1) dimension 
Tabulist matrix with rows corresponding to 
customer identification numbers and 
columns corresponding to the index, or 
position, of the customer in the solution 
tour. The data elements in this array store 
the iteration number k for the move that 
placed the customer into this position plus 
the tabu length 9. This value will be 
compared to the current iteration to 
determine if a move of this attribute is tabu. 

Adjusting Tabu Length 

To maintain search quality, we 
reactively adjust the tabu length based on 
the number of iterations occurring between 
cycles. Cycles occur when the search 
revisits a solution; a high quality search 
should infrequently revisit past solutions. 
Given the combinatorial nature of the 
problem, it is possible to select a seemingly 
different tour that is actually a redundant 
tour—one that appears new, but in fact is a 
revisit of a previous equivalent tour. Figure 
4 illustrates two different tours which are 
actually redundant tours. 

Redundant tours are identified with a 
two-attribute hashing scheme. The first 
hashing attribute, the hashing function f(t), is 
assigned the objective function value Z(i). 
Woodruff and Zemel (1993) propose a 
method that we use to compute the second 
hashing attribute, the tour hashing value 
thv(t). We take the tour vector and calculate 
an integer based on random integer values, 
^(ti), where Tj is the index of the customer 
assigned to tour position /, such that 



r/zv(r) = X^(^)-vF(r,.+1) 

This tour hashing value attempts to 
minimize the occurrence of a collision, or 
the incorrect identification of two tours as 
being identical or redundant when they are 
actually distinct. 

T(l) o —.Q—.Q—« 6 —^7)—{7)—. 7 —{T)—- 8 

T{2) K5MiH -d> 
Figure 4. Redundant Tours 
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We also use other attributes to 
identify a solution; these are tour cost, travel 
time, time window penalty, and total 
penalty. These    integer    values    are 
concatenated into a uniquely identifiable 
Java string object and stored with Java 
Hashtable class functions. This unique 
string value allows us to efficiently identify 
past solutions, as well as access the hash 
record containing solution attributes stored 
in their original form. 

When the search revisits a solution 
within the designated number of iterations, 
or cycle length, the tabu length is increased 
by a scaling factor. This tabu length 
increase diversifies the search. If the search 
is not revisiting solutions, tabu length is 
decreased by a scaling factor. When a 
solution is revisited within the maximum 
cycle length, the algorithm calculates a 
moving average of cycle lengths, or the 
average number of iterations between a 
revisit. If the tabu length has remained 
unchanged for a number of iterations greater 
than or equal to this moving average, then 
the current tabu length is decreased by the 
scaling factor, thus intensifying the search. 
We set the initial tabu length value 6 to the 
smaller of either 30 or m + n - 1. 

Aspiration and Escape Functions 

Aspiration allows for overriding the 
tabu status of a move if the proposed tour 
solution is better than any previous solution. 
If all moves are tabu and no proposed 
solution meets aspiration criteria, the search 
escapes to the neighbor tour with smallest 
move value. This escape move is 
accomplished regardless of tabu status and 
results in a tabu length decrease. 

Move Evaluation and Selection 

The RTS systematically explores the 
solution space using a series of swap moves 
and chooses the allowable adjacent solution 
with the smallest move value. The move 
value is the difference between the 
incumbent's objective function value and 
the candidate's objective function value 
given as the cost/travel savings resulting 
directly from the 3-opt move and the 
resultant changes occurring in the rest of the 
tour. 

Heuristic Description 

Crucial to the success of the solver is 
the time matrix which contains the travel 
times ty between every node combination i, 



j.   The time matrix is built in a three-step between arrival at node i and the subsequent 
process.   First, cartesian distances between arrival at node j. We use these values as our 
locations   are   computed.      Second,   these costs, i.e., Cy = tl}.   Actual en route travel 
distances are converted to times based on time can be calculated by subtracting service 
problem parameters. Third, the service time time s, from fy. 
at node i is added to the time.   As such, fy The reactive tabu search executes the 
values then represent the amount of time following steps: 

Step 1 (Initialization) Initialize data structures, vectors, and 
parameters. 

Step 2 (Problem Input) Read data and assign node information. 
Calculate appropriate time matrix. 

Step 3 (Route Initialization) Construct initial tour, calculate initial 
tour schedule, and compute associated tour cost and 
hashing value. Store values. Assign initial tour as 
incumbent tour. 

Step 4 (Cycle Check) Check hashing structure for the incumbent 
tour. If found, update the iteration when found, increase 
the tabu length if applicable. If not found, add to the 
hashing structure, decrease the tabu length, if applicable. 
Increment current iteration number. 

Step 5 (Check Later Insertions) Accomplish swap moves to 
evaluate all forwards insertions. Store position i and depth 
d of best move value, aspiration, and escape information. 

Step 6 (Check Earlier Insertions) Accomplish swap move to 
evaluate all backwards insertions. Store i, d of best move 
value, aspiration, and escape information. 

Step 7 (Execute Move) Move to a non-tabu neighbor according to 
appropriate decision criteria. If all moves are tabu, use the 
escape move and reduce the tabu length. Perform insertion, 
update schedule, assign neighbor tour as new incumbent 
tour, compute hashing value, and track best tour 
information. If current iteration number is less than the 
maximum iteration number, return to Step 4. 

Step 8 (Output results) Terminate heuristic search and output 
results. 



Computational Complexity 

The neighborhood size considered at 
each step is 0(nd), and the computation of 
the move value for each neighbor is 0(n). If 
the depth of the insertion moves is restricted 
to 1, then the algorithm achieves a minimum 
computational complexity of 0(n2). The 
worst case complexity is 0(n2d) where d is 
the depth of the allowable insertion moves. 
When the insertion depth is expanded to n 
the computational complexity expands with 
it to a maximum 0(n3). However, empirical 
testing shows that considerably better times 
than 0(n3) can be achieved due to the strong 
time window infeasibility restriction 
discussed earlier (Carlton 1995). 

We seek to enhance the capabilities 
of existing mission software. Current 
software will automatically generate 
deterministic items such as terrain avoidance 
profiles, ground station to UAV line of site 
availability, route times between defined 
way points, fuel consumption, heading and 
turn information, etc., but it does not and 
will not optimize routes. This combinatorial 
problem is a task left to the operator. We 
provide our routing tool to fill the gap that 
exists in making complicated routing 
decisions. 

Since this is a real-world operational 
problem, several real-world operational 
factors influence our implementation 
approach. 

REACTIVE TABU SEARCH FOR 
DYNAMIC UNMANNED AERIAL 
VEHICLE ROUTING 

The US Air Force uses the Predator 
UAV to perform a reconnaissance and 
surveillance mission. The Predator is 
remotely flown by Air Vehicle Operators, 
who are Air Force pilots, located in a 
Ground Control Station. Co-located 
Payload Specialists remotely control the 
electro-optical camera, infrared scanner, and 
synthetic aperture radar to observe targets of 
interest as specified by higher command 
elements. The imagery is returned real-time 
via satellite link to intelligence specialists 
and regional commanders (McKenna 1998). 
The Predator has been used successfully to 
monitor buildings, military forces, and battle 
activities in Bosnia pursuant to United 
Nations and NATO missions. The 
Predator's long airborne endurance of nearly 
40 hours and its ground based control 
system (with ready access to computers) 
makes it an ideal candidate for efficient 
computerized routing strategies. 

Operational Parameters 

Operational employment of the UAV 
drives several changes to how the problem 
data is specified and solved. These changes 
range from relatively superficial ones in how 
the coordinates and times are represented, to 
moderate changes in how the parameters are 
calculated, to significant changes in how the 
objective function is formulated to reflect 
the nature of the problem. 

Geographic Coordinates 

Coordinates are expressed in a 
geocentric format instead of a Cartesian 
format. We calculate the distance and 
bearing between coordinate points as shown 
in AFR 51-40, Air Navigation (Departments 
of the Air Force and Navy 1983). Given the 
departure latitude L\ and longitude \\ and 
the destination latitude L2 and longitude X2, 
the great circle distance d in nautical miles 
between the two coordinate points can be 
found   using   the   following   formulation 
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d = 60 • cos-1 [sin L, • sin L, + cos L, • cos Z^ • cos(/t2 - A,)]. 

Using this distance, an intermediate heading 
angle H in degrees is determined as 

H =cos" 
sinLj -sin I, -cos 

r J\ 

V60y 

sin — -cosL, 
60j       H 

Based on the geometry of the coordinates, 

this intermediate heading angle is adjusted 
to obtain the initial true heading 0,y, 
measured in degrees from true north, i.e., 

_\H, sin(A2-A,)<0 
M'7     [360°-//,   sinU2-A,)>0' 

This distance and bearing geometry is 
shown in Figure 5. 

(£,,>.,) 

<l2.*,) 

Figure 5. Distance and Bearing Geometry (Spherical Triangle) 

Wind Effects on Ground Speed 

When computing transit times 
between locations, we must account for the 
effect of winds aloft. Given a wind speed 
WS from a bearing of Qws measured in 
degrees from true north, one can calculate 
the effective ground speed GS along the true 
course 0,y from the first location to the 
second. The difference between 0,y and ®ws 
is represented by 8. Figure 6 illustrates this 
geometry. When I 8 I < 90, A is negative and 
subtracts from the airspeed as a headwind 
component. When 90 < I 8 I < 180, A is 
positive  and  adds  to  the  airspeed  as  a 

tailwind component. The wind correction 
angle from true heading is denoted by y. 
This adjusted heading corrects the flight 
path to compensate for wind drift. 
Groundspeed, as influenced by wind aloft, is 
explicitly calculated as 

A = WS -cos(180-£) 
C = WS -sin(l 80 -S) 

B = JAS2-C2 

and 

GS = A +B = WS ■ cos(lS0-S) + -yJAS2-WS2-sin2(ISO-5) 
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The transit time between the points is then 
simply t{j = dy /GS . 

Headwind Effect (GS < AS) 

©, 

Tailwind Effect (GS > AS) 

GS 

Figure 6. Headwind and Tailwind Ground Speed Adjustment 

Numerical Formatting 

The latitude L and longitude X 
information is measured in degrees where 
one degree is composed of sixty minutes and 
one minute is composed of sixty seconds. 
The are values often listed in a degrees 
minutes seconds format (DD MM SS.ss); we 
convert latitudes and longitudes into a 
decimal degree format for computational 
ease using the formula 

D.d = DD + MM 160 + SS.ss/3600. 

Locations can also be listed in a degrees 
minutes decimal minutes format {DD 
MM.mm) where minutes are expressed as 

decimal values.    Conversion to a decimal 
degree value is defined as 

D.d = DD + MM.mm/60. 

Clock time is often expressed in a 
military-style hours minutes (HH MM) 
format; for computational ease, we express 
time in minutes tminutes as 

tminMes = 60-HH+MM 

Objective Function Modifications 

The UAV operating environment 
also mandates changes to the objective 
function. The standard VRPTW objective 
function seeks to minimize travel costs as 
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represented by the distance traveled. Early 
arrival to a customer is allowed, and the 
resulting waiting time is cost free in the 
objective function. This may be appropriate 
for a standard terrestrial application in which 
the costs are associated mainly with 
transiting between locations, but in UAV 
operations there are costs associated with 
keeping the aircraft airborne. Thus, UAV 
waiting times represent costs that must be 
considered in our efforts to minimize the 
objective function. We therefore modify the 
original and penalized objective functions ( 
1 ) and ( 2 ) to include waiting time w,- at 
node i in addition to the original transit 
times as 

Dynamic Mission Requirements 

The nature of UAV employment 
presents unique situations that our routing 
tool must handle. As such, we show how 
our scenarios depart from traditional VRPs 
and explain how we successfully implement 
these    requirements. Unique    routing 
situations exist with regard to altitude-based 
wind tiers, random service times, emerging 
priority targets, and locked route sequences. 
These instances are explored in the 
following paragraphs. 

Optimizing Use of Altitude-Based Wind 
Tiers 

minimize Z'f (0 = Z Z (cu + w> \ 
i   i 

As before, the penalized objective function 
is gained by adding the scaled infeasibility 
values to yield 

minimize Z'(t)= Z'f (t)+pLDLD + pmTW . 

The search now attempts to minimize the 
total time aloft and proceeds as previously 
presented. 

Recall that in the general MTSPTW 
problem, travel times between fixed 
locations   are   known,    with   fixed   and 
symmetric   costs   (i.e.,    cij=cji). This 

symmetry does not hold in the UAV 
operating environment where winds affect 
travel times and can vary both in direction 
and velocity as a function of altitude 
(depicted below in Figure 7). We 
incorporate this wind information to select 
the minimum travel time between nodes. 

18,000 ' 

10,000' 

5,000' 

,,*T'2.,.P00 ' 
 ~~- ~*~" e 

Figure 7. Typical Winds Aloft Profile 

Specifically in any altitude band k, 
travel time is a function of UAV altitude hiJk 

and airspeed  ASk; wind speed  WSk   and 

direction &WSk; and the distance d-tj and 

bearing Q^ between locations. We make 

the    simplifying    assumption    that    wind 
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direction and speed is constant throughout 
an entire altitude zone. This is reasonable 
since values at any point in the region are 
interpolated predictions based on 
measurements of actual conditions at 
discrete weather station locations (Parsons 
1999). 

Using our previous equations, we 
calculate times between all locations based 
on the adjusted ground speed for each 
altitude band. This forms tiers of 
asymmetric wind-influenced travel time 
matrices from which we select the smallest 
travel time from i toy as 

t:i - nun 
1 V k GS^) 

where   GS^Qi^)   the  ground  speed  as   a 

function of traveling in altitude band k. The 
corresponding altitude is assigned as our 
flight altitude for that leg. Since this wind 
optimization process is accomplished prior 
to beginning the tabu search, the heuristic 
will accept an arbitrary number of altitude 

bands with no appreciable effect on 
computational time or efficiency. 

Random Service Times 

In the general TSPTW problem, 
customer service times are known constants. 
In the UAV problem context, the target 
service times are random variables. The 
service time represents the amount of time 
the aircraft spends circumnavigating the 
target point to gather imagery from multiple 
viewpoints, and, due to the unknown nature 
of the target, military necessity may dictate a 
longer observation than initially planned. 
The actual target i service time   5,   falls 

between the minimum service time smjn{i) 

and   the   maximum   service   time   smax(i) 

inclusive. Service time will be the minimum 
service time with 0.7 probability; when the 
time is above the minimum, it is modeled as 
uniformly distributed between the minimum 
and maximum. The service time is given by 

S: 
\smin{i) with 0.7 probability 

[Uniform(5m,„(f),5mav(/))   with 0.3 probability 

A known service time is simply specified by 
setting 5; =smin{i)=smax{i). 

Emerging Targets 

Another aspect of UAV operations is 
the pop-up priority target. This occurs when 
the UAV is retasked in flight to observe a 
target of utmost military urgency. 
Depending on the new target location, this 
immediate divert may render the remainder 
of the route obsolete.   Rather than proceed 

with a potentially sub-optimal route, our 
solver offers the ability to route-from-here. 

Given that the UAV will proceed to 
the ad hoc target, this location becomes a 
new starting point and the remaining targets 
are processed in a route that returns the 
UAV to the depot. This route-from-here 
capability is achieved with smart processing 
of the time matrix. 

Locked and Forbidden Routes 
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At times, UAV operations require a 
locked route, in which one or more targets 
must be visited in a specific order. This may 
occur with a directed route or with certain 
observational requirements such as a 
consecutive imaging pass for a synthetic 
aperture radar image. The GUI allows these 
route points to be locked together and 
treated as an aggregated node with a 
beginning location corresponding to the first 
point and an ending location corresponding 
to the last point. The aggregated node is 
assigned   a   composite   service   time   that 

accounts for intra-node service, wait, and 
travel times. 

The opposite of a locked route is a 
forbidden route which may be a result of a 
no-fly zone or threat region. The forbidden 
area is then monitored for flight paths which 
pass through it; if a path intersects a 
forbidden area, it is modeled as a longer 
route that skirts the edge of the region as 
shown in Figure 8. 

Initial Fobidden Resultant 
Route Route Around 

/    No     \ 
/   Fiy     \ 

/      Region        \ 

Figure 8. Forbidden Route Example 

COMPUTATIONAL RESULTS 

General Results 

Our initial testing and validation 
used the Solomon VRPTW problem test 
sets—25, 50, and 100 customer scenarios 
with random, clustered and random 
clustered    distribution    patterns. Our 
computational results are compared in 
Tables 1-6 (Ryer 1999) to known optimal 
answers obtained by Desrochers, Desrosiers, 
and Solomon (1992). Dashed regions of the 
chart indicate problems that could not be 
optimally solved by Desrochers et al. All 
problems were solved in reasonable 
computation times by our RTS algorithm 

(2500 iterations with user specified 
penalties) with an overall solution quality 
within 1% of optimal values. Solving the 
harder VRPTW class problems did not 
require an increase in computation times 
over the mTSPTW class problems. 

The objective function value used in 
these initial tests includes travel time, 
missed time window penalties, and load 
overage penalties. With a relatively small 
amount of coding, the objective function can 
be expanded to include additional penalties, 
changed to represent several different 
weighted objective functions, or combined 
in a hierarchical objective function. Results 
are presented in Tables 1 through 6. 
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Table 1. Solomon mTSPTW Computational Results (25 Customers) 

Problem O'Rourke & Rver Optimal Difference 
A          A% 

Start 
Set' Z,(t) Used Iter2 Time3 Z,(t) Used Time Method5 

R101 867.1 8 317 3 867.1 8 5.8 0.0 0.00% OST 
R102 797.1 7 35 1 797.1 7 20.3 0.0 0.00% OST 
R103 704.6 5 132 1 704.6 5 22.2 0.0 0.00% OST 
R104 666.9 4 86 1 666.9 4 46.0 0.0 0.00% OST 
R105 780.5 6 95 1 780.5 6 22.6 0.0 0.00% OST 
R106 715.4 5 28 0 715.4 5 205.2 0.0 0.00% RST0 
R107 674.3 4 2080 23 674.3 4 304.1 0.0 0.00% RST2 
R108 647.3 4 45 0 647.3 4 307.4 0.0 0.00% OST 
R109 691.3 5 21 0 691.3 5 14.4 0.0 0.00% OST 
R110 694.1 5 91 2 679.8 4 64.3 14.3 2.10% RST0 
Rill 678.8 4 178 2 678.8 4 330.3 0.0 0.00% RST0 
R112 643.0 4 25 0 643.0 4 623.3 0.0 0.00% LOT 

C101 2441.3 3 23 0 2441.3 3 18.6 0.0 0.00% OST 
C102 2440.3 3 379 4 2440.3 3 79.9 0.0 0.00% LOT 
C103 2440.3 3 72 1 2440.3 3 134.7 0.0 0.00% OST 
C104 2436.9 3 797 8 2436.9 3 223.9 0.0 0.00% OST 
C105 2441.3 3 209 2 2441.3 3 25.6 0.0 0.00% OST 
C106 2441.3 3 26 1 2441.3 3 20.7 0.0 0.00% OST 
C107 2441.3 3 28 1 2441.3 3 31.7 0.0 0.00% OST 
C108 2441.3 3 1421 15 2441.3 3 43.1 0.0 0.00% OST 
C109 2441.3 3 148 1 2441.3 3 585.4 0.0 0.00% OST 

RC101 711.1 4 214 3 711.1 4 225.4 0.0 0.00% LOT 
RC102 601.7 3 20 1 596.0 3 18.1 5.7 0.96% OST 
RC103 582.8 3 2193 24 582.8 3 103.0 0.0 0.00% RST2 
RC104 556.6 3 604 6 556.6 3 177.9 0.0 0.00% OST 
RC105 661.2 4 79 1 661.2 4 37.4 0.0 0.00% RST1 
RC106 595.5 3 60 1 595.5 3 248.4 0.0 0.00% RST1 
RC107 548.3 3 69 1 548.3 3 113.9 0.0 0.00% RST0 
RC108 544.5 3 2203 23 544.5 3 256.0 0.0 0.00% OST 

Average 1218.19 3.93 402.7 4.38 1184.8 3.90 148.6 0.69 0.11% — 

(Ryer 1999) 

Maximum number of vehicles: m=10. Time window penalty: pnv =1.0. 
Maximum iterations: k - 2500. 
Seconds on a Pentium II400 MHz system. Total runtime - 28 seconds each. 
Seconds on a Sun Sparc 1 workstation. 
OST is ordered starting tour. RST is random starting tour seeded with the value given. LOT is listed ordering. 
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Table 2. Solomon mTSPTW Computational Results (50 Customers) 

Problem O'Rourke & Rver                                        Optimal                                 Difference         Start 
Set' Z,(t)        Used          Iter2       Time3             Z,(t)        Used         Time4               A          A%         Method5 

R101 
R102 
R103 
R104 
R105 
R106 
R107 
R108 
R109 
R110 
Rill 
R112 

1543.8 
1409.0 
1282.7 
1131.9 
1401.6 
1293.0 
1211.1 
1117.7 
1286.7 
1207.8 
1216.6 
1140.5 

12 
11 
9 
6 
9 
8 
7 
6 
8 
7 
7 
6 

239 
1939 
871 
734 
402 

2294 
1786 
1698 
1452 
1853 
1775 
1784 

9 
78 
36 
31 
15 
94 
75 
75 
58 
78 
72 
78 

1535.2 
1404.6 
1272.5 

1399.2 
1285.2 
1211.1 

1197.0 

12 
11 
9 

66.7 
67.8 

8939.1 

362.6 
386.4 

7362.1 

4906.1 

8.6 0.56% 
4.4 0.31% 

10.2 0.80% 

2.4 0.17% 
7.8 0.61% 
0.0 0.00% 

10.8 0.90% 

RST0 
RSTO 
OST 
RSTO 
LOT 
RST1 
RSTO 
RSTO 
RSTO 
RST1 
RST2 
RST2 

C101 
C102 
C103 
C104 
C105 
C106 
C107 
C108 
C109 

4862.4 
4861.4 
4855.8 
4884.1 
4861.2 
4862.4 
4861.2 
4861.2 
4860.9 

119 
607 

1699 
1253 
232 
308 
382 
92 

301 

4 
19 
57 
43 

7 
9 

12 
3 
9 

4862.4 
4861.4 

4862.4 

67.1 
330.2 

91.3 

0.0 
0.0 

0.00% 
0.00% 

0.0       0.00% 

LOT 
LOT 
OST 
LOT 
OST 
LOT 
LOT 
LOT 
OST 

RC101 
RC102 
RC103 
RC104 
RC105 
RC106 
RC107 
RC108 

1444.0 
1325.1 
1216.2 
1046.5 
1355.3 
1223.2 
1146.0 
1098.1 

1252 
754 

1589 
860 
248 

1921 
189 

1821 

38 
23 
54 
31 

8 
61 

7 
65 

RST1 
RST1 
RSTO 
RST2 
OST 
RST2 
LOT 
OST 

Average       2374.7 6.66     1050 39.6 

Maximum number of vehicles: R sets m = 15; C sets m = 6; RC sets m = 8. Time window penalty: pr\v = 3.0. 
2 Maximum iterations: k = 2500. 
3 Seconds on a Pentium II400 MHz system. Total runtime - 100 seconds each. 

Seconds on a Sun Sparc 1 workstation. 
OST is ordered starting tour. RST is random starting tour seeded with the value given. LOT is listed ordering. 

(Ryer 1999) 
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Table 3. Solomon mTSPTW Computational Results (100 Customers) 

Problem O'Rourke & Rver Optimal Difference 
A          A% 

Start 
Set1 Z,(t) Used Iter2 Time3 Z,(t) Used Time4 Method5 

R101 2689.6 20 2167 371 2607.7 18 1064.2 81.9       3.14% RSTO 
R102 2522.9 18 1783 322 2434.0 17 756.9 88.9       3.65% RSTO 
R103 2266.8 15 1797 351 — — — —        — RST2 
R104 2010.6 11 1401 311 — — — —        — RST2 
R105 2418.0 16 560 93 — — — —        — RST1 
R106 2256.9 14 1403 252 — — — —        — LOT 
R107 2091.6 12 1462 278 — — — —        — LOT 
R108 1980.3 10 2325 491 — — — —        — RSTO 
R109 2191.4 13 2149 398 — — — —        — RST1 
R110 2121.1 12 1479 291 — — — —        — RST2 
Rill 2082.1 12 1882 370 — — — —        — RST2 
R112 1986.1 11 2325 507 — — — —        — RST1 

C101 9827.3 10 285 45 9827.3 10 434.5 0.0       0.00% OST 
C102 9820.3 10 237 42 — —■ — —       — OST 
C103 9813.7 10 256 49 — — — —        — OST 
C104 9809.0 10 2495 536 — — — —       — RST2 
C105 9821.2 10 313 50 — — — —        — OST 
C106 9827.3 10 455 75 9827.3 10 724.8 0.0       0.00% OST 
C107 9818.9 10 292 48 — — — —        — OST 
C108 9818.9 10 662 115 — — — —       — OST 
C109 9818.6 10 1381 262 — — — —       — LOT 

RC101 2685.7 16 897 144                     OST 
RC102 2534.0 15 2410 434 — — — —        — OST 
RC103 2352.3 13 1047 195 — — — —        — RSTO 
RC104 2209.1 11 1311 272 — — — ■—       — RST2 
RC105 2538.0 15 2327 412 — — — —       — RST1 
RC106 2457.8 14 443 74 — — — —       — RSTO 
RC107 2236.9 12 1822 344 — — — —       — RSTO 
RC108 2115.9 11 2206 451 — — — —      — RST1 

Average 4624.9 12.45 1365 261.48 — — — —      — — 

(Ryer 1999) 

Maximum number of vehicles: m = 25. Time window penalty: pnv = 8.0. 
Maximum iterations: k = 2500. 
Seconds on a Pentium II 400 MHz system. Total runtime - 550 seconds each. 
Seconds on a Sun Sparc 1 workstation. 
OST is ordered starting tour. RST is random starting tour seeded with the value given. LOT is listed ordering. 
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Table 4. Solomon VRPTW Computational Results (25 Customers) 

Problem O'Rourke & Rver Optimal Difference 
A          A% 

Start 
Set1 Z,(t) Used Iter2 Time3 Z,(t) Used Time4 Method5 

R101 867.1 8 317 4 867.1 8 5.8 0.0 0.00% OST 
R102 797.1 7 35 1 797.1 7 20.3 0.0 0.00% OST 
R103 704.6 5 132 1 704.6 5 22.2 0.0 0.00% OST 
R104 666.9 4 86 2 666.9 4 46.0 0.0 0.00% OST 
R105 780.5 6 95 1 780.5 6 22.6 0.0 0.00% OST 
R106 715.4 5 1149 12 715.4 5 205.2 0.0 0.00% RST0 
R107 674.3 4 2080 24 674.3 4 304.1 0.0 0.00% RST2 
R108 647.3 4 58 1 647.3 4 307.4 0.0 0.00% OST 
R109 691.3 5 32 1 691.3 5 14.4 0.0 0.00% OST 
R110 694.1 5 91 1 679.8 4 64.3 14.3 2.10% RST0 
Rill 678.8 4 178 3 678.8 4 330 0.0 0.00% RSTO 
R112 643.0 4 25 1 643.0 4 623.3 0.0 0.00% LOT 

C101 2441.3 3 23 0 2441.3 3 18.6 0.0 0.00% OST 
C102 2440.3 3 106 1 2440.3 3 79.9 0.0 0.00% LOT 
C103 2440.3 3 72 1 2440.3 3 134.7 0.0 0.00% OST 
C104 2436.9 3 741 8 2436.9 3 223.9 0.0 0.00% OST 
C105 2441.3 3 170 1 2441.3 3 25.6 0.0 0.00% OST 
C106 2441.3 3 35 1 2441.3 3 20.7 0.0 0.00% OST 
C107 2441.3 3 51 0 2441.3 3 31.7 0.0 0.00% OST 
C108 2441.3 3 455 4 2441.3 3 43.1 0.0 0.00% OST 
C109 2441.3 3 197 2 2441.3 3 585.4 0.0 0.00% OST 

RC101 711.1 4 214 2 711.1 4 225.4 0.0 0.00% LOT 
RC102 601.7 3 149 1 596.0 3 18.1 5.7 0.96% OST 
RC103 582.8 3 134 2 582.8 3 103.0 0.0 0.00% RST2 
RC104 556.6 3 29 1 556.6 3 177.9 0.0 0.00% LOT 
RC105 661.2 4 24 1 661.2 4 37.4 0.0 0.00% RST1 
RC106 595.5 3 60 1 595.5 3 248.4 0.0 0.00% RST1 
RC107 548.3 3 179 2 548.3 3 113.9 0.0 0.00% RST1 
RC108 544.5 3 353 3 544.5 3 256.0 0.0 0.00% LOT 

Average 1218.2 3.93 250.7 2.86 1184.8 3.90 148.6 0.69 0.11% LOT 

(Ryer 1999) 

Maximum number of vehicles: m=10. Time window penalty: pnv = 8.0; load penalty pw =10.0. 
Maximum iterations: k = 2500. 
Seconds on a Pentium II 400 MHz system. Total runtime - 28 seconds each. 
Seconds on a Sun Sparc 1 workstation. 
OST is ordered starting tour. RST is random starting tour seeded with the value given. LOT is listed ordering. 
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Table 5. Solomon VRPTW Computational Results (50 Customers) 

Problem O'Rourke & Rver Optimal Difference 
A          A% 

Start 
Set' Z,(t) Used Iter2 Time3 Z,(t) Used Time4 Method5 

R101 1543.8 12 239 9 1535.2 12 66.7 8.6 0.56% RSTO 
R102 1409.0 11 1939 82 1404.6 11 67.8 4.4 0.31% RSTO 
R103 1278.7 9 1935 87 1272.5 9 8939.1 6.2 0.49% OST 
R104 1137.4 6 1533 69 — — — — — RST2 
R105 1401.6 9 402 16 1399.2 9 362.6 2.4 0.17% LOT 
R106 1293.0 8 2294 99 1285.2 8 386.4 7.8 0.61% RST1 
R107 1211.1 7 1786 79 1211.1 7 7362.1 0.0 0.00% RSTO 
R108 1117.7 6 1698 78 — — — —• — RSTO 
R109 1286.7 8 1451 61 —. — — — — RSTO 
R110 1207.8 7 1853 84 1197.0 7 4906.1 10.8 0.90% RST1 
Rill 1216.6 7 1775 76 — — — — — RST2 
R112 1135.0 6 1456 68 — — — — — RST2 

C101 4862.4 5 74 3 4862.4 5 67.1 0.0 0.00% LOT 
C102 4861.4 5 232 9 4861.4 5 330.2 0.0 0.00% LOT 
C103 4861.4 5 2035 87 4861.4 5 896.0 0.0 0.00% RSTO 
C104 4882.8 5 1727 79 — — — — — RSTO 
C105 4862.4 5 494 19 4862.4 5 99.1 0.0 0.00% OST 
C106 4862.4 5 91 4 4862.4 5 91.3 0.0 0.00% LOT 
C107 4862.4 5 154 6 4862.4 5 170.6 0.0 0.00% LOT 
C108 4862.4 5 95 4 4862.4 5 245.6 0.0 0.00% LOT 
C109 4862.4 5 643 26 — — — — — OST 

RC101 1446.8 8 1613 60           OST 
RC102 1331.8 7 1508 60 — — — — — RST2 
RC103 1210.9 6 2194 94 — — — — — OST 
RC104 1046.5 5 412 18 — — — — — LOT 
RC105 1355.3 8 104 4 •— — — — — OST 
RC106 1223.2 6 1454 58 — — — — — RST2 
RC107 1144.4 6 898 36 — — — — — RST1 
RC108 1098.1 6 1361 58 — — — — — OST 

Average 2375.01 6.66 1153 49.4 — — — — — — 

(Ryer 1999) 

Maximum number of vehicles: m=15. Time window penalty: prw = 1.0; load penalty pio =10.0. 
Maximum iterations k = 2500. 
Seconds on a Pentium II400 MHz system. Total runtime - 100 seconds each. 
Seconds on a Sun Sparc 1 workstation. 
OST is ordered starting tour. RST is random starting tour seeded with the value given. LOT is listed ordering. 

20 



Table 6. Solomon VRPTW Computational Results (100 Customers) 

Problem O'Rourke & Rver Optimal Difference 
A          A% 

Start 
Set' Z,{t) Used Iter2 Time3 Z,(0 Used Time4 Method3 

R101 2676.2 20 2271 414 2607.7 18 1064.2 68.5 2.63% RST2 
R102 2502.4 19 492 96 2434.0 17 756.9 68.4 2.81% RSTO 
R103 2265.0 15 1091 228 — — — — — RST2 
R104 2039.6 12 1488 338 — — — — — OST 
R105 2399.4 16 1974 378 — — — — — RSTO 
R106 2268.4 14 2431 491 — — — — — LOT 
R107 2129.0 13 1905 406 — — — — — RST1 
R108 1956.8 10 2415 565 — — — —. — RSTO 
R109 2181.0 14 1587 311 — — — — — RST1 
R110 2133.2 13 1548 328 — — — — — RST2 
Rill 2077.3 12 2248 491 — — — — — RST2 
R112 1971.6 11 1898 460 — — — — — RST2 

C101 9827.3 10 263 43 9827.3 10 434.5 0.0 0.00% OST 
C102 9827.3 10 1317 253 9827.3 10 1990.8 0.0 0.00% OST 
C103 9828.9 10 2500 535 — — — — —. RSTO 
C104 9949.6 10 2194 509 — — — — — RST2 
C105 9827.3 10 378 65 — — — — — OST 
C106 9827.3 10 309 55 9827.3 10 724.8 0.0 0.00% OST 
C107 9827.3 10 1144 210 9827.3 10 1010.4 0.0 0.00% OST 
C108 9827.3 10 1638 321 9827.3 10 1613.6 0.0 0.00% OST 
C109 9853.3 10 2202 463 — — — — — RSTO 

RC101 2669.9 16 2110 381           OST 
RC102 2498.4 15 2136 419 — — — — — LOT 
RC103 2363.6 13 1333 270 — •— — — — RST1 
RC104 2179.2 11 1365 308 — — — — — LOT 
RC105 2557.4 15 2482 473 — — — — — OST 
RC106 2432.8 13 2222 434 — — — — — RST2 
RC107 2266.1 12 2024 417 — — — — — RST2 
RC108 2175.1 12 2122 475 — — — — — RST 1 

Average 4632.3 12.62 1693 349.6 — — — — — — 

(Ryer 1999) 

Maximum number of vehicles: m = 25. Time window penalty: pnv = 8.0; load penalty pLD =10.0. 
Maximum iterations k = 2500. 
Seconds on a Pentium II 400 MHz system. Total runtime - 550 seconds each. 
Seconds on a Sun Sparc 1 workstation. 
OST is ordered starting tour. RST is random starting tour seeded with the value given. LOT is listed ordering. 
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UAV Results 

We analyzed a Bosnia UAV scenario 
provided by Bergdahl (1998). Winds for the 

region of interest are given in Table 7. 
These winds are taken from actual US Air 
Force meteorological conditions for the 
operating region. 

Altitude 
Tier 

0 
1 
2 

Table 7. Wind Data 

Altitude 
(ft) (deg) 

WS 
(kts) 

5,000 
10,000 
18,000 

300 
300 
310 

7.5 
37.5 
50.0 

AS 
(kts) 

70 
70 
70 

Scenario details are listed in Table 8, and a 
map of this scenario is provided in Figure 9. 
The 52 targets fall into three remote 
operating zones (ROZs), each with non- 
overlapping time windows. Route 
optimization begins and ends with the Srbac, 
Bosnia waypoint, since the route to and from 
there must follow a mandatory air corridor. 

The scenario was solved in 108 
seconds on a Pentium II 300 MHz system 
using the UAV specific module of the 
heuristic. With optimum use of wind tiers, 
the solver returned a tour requiring only one 
vehicle with a mission time of 822 minutes. 
Without wind tier modeling, two vehicles 
are required with a combined mission time 
of 1384 minutes. This demonstrates the 
improvement that can be achieved with 
smart selection of travel altitudes. 

The optimized tour output is listed in 
Table 9 (the "Alt" column designates the 
altitude tier to be used enroute to the next 
target); this flight path is shown in Figures 
Figure 10 and Figure 11. Figure 11 shows 
the same sequence as Figure 10 with a 
temporal component as the added third axis 
and gray bars representing the time 
windows. 

CONCLUSIONS 

Our Java implementation of a 
reactive tabu search first described by Battiti 
and Tecchiolli (1994) successfully solves 
single/multiple traveling salesman problems 
with and without time windows (TSP, 
MTSP,TSPTW, MTSPTW), as well as 
capacitated vehicle routing problems with 
and without time windows (VRP, VRPTW). 
On the Solomon problem sets, our heuristic 
produces close to optimal solutions within 
reasonable computing times. Addition of 
reactive penalties allows the algorithm to 
perform more robustly over a wider set of 
problems. 

Our implementation supports UAV 
problems and formats as well as classical 
problems and formats. Changes required for 
the UAV problem reflect unique aspects of 
the operational UAV mission and include 
items such as a reformulated objective 
function, alternate coordinate and numerical 
formatting, and random customer service 
times. The introduction of altitude-based 
wind tiers, when selecting UAV routes, 
capitalizes on the altitude-dependent, highly 
asymmetric nature of the flight environment. 

The Java implementation is an object 
oriented   structure   that   is   both   machine 
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portable and readily modifiable to support 
new problem instances. The internal data 
structure and methodology work with the 
GUI to support operational requirements 
such as route locking and dynamic 
rescheduling in support of priority targets. 

We present several ideas that 
represent natural and worthwhile extensions 
to the work accomplished. 

Heuristic Modifications 

Modifications to the tabu search 
heuristic could include any of the following 
ideas. Additional operators have increased 
solution quality for genetic algorithms 
(Petridis et al. 1998); construction and 
implementation of additional operators may 
prove useful. These operators could 
consider additional random or directed 
moves which expand the neighborhood, 
such as a 4-opt, for possible improvements 
in the objective function. 

Restarts based on changes in the 
solution quality or stabilization of the 
objective function could prove useful. 
Methods to consider include the following: 
maintenance of an elite list of best solutions 
where a restart resumes with relaxed tabu 
restrictions (Xu and Kelly 1996); 
intensification from previous location with 
stored tabu status (Armentano and Ronconi 
1999); or a multi-start backjwnp tracking 
scheme (Liaw 1999, Norwicki and 
Smutnicki 1996). Other initialization 
methods such as a sweep initialization or 
petal initialization (Renaud 1996b) could be 
explored. 

UAV Related Modifications 

Changes to the UAV specific aspect 
of the problem could include a priority 
scheme hierarchy that generates route 
segments based on assigned target priorities. 
This would involve constructing subtours 

that are then smartly linked together— 
obviously, the parameters of one subtour 
will be highly dependent on the others. The 
rudimentary wind modeling (discrete levels 
and average regional values) could be 
replaced with wind values that correlate 
specifically to each leg. A more detailed 
modeling of actual UAV transition times 
between altitudes, with modeled climb rates 
would provide a higher fidelity mission 
profile. The service times distribution 
model, which is still rather unknown, could 
be updated to reflect data gathered from 
recent operations. 

Java Code Modifications 

Although we are not strict computer 
programmers, work was done in an attempt 
to improve the code for better heuristic 
performance. This includes items such as 
ordering logic comparisons (so that the most 
likely outcome is encountered first to reduce 
comparisons) and changing several methods 
(to     decrease     instantiations). These 
optimization modifications reduced the run 
time for the 100 customer, 25 vehicle 
Solomon problem sets from an average of 
700 seconds to 550 seconds. While this 
represents about a 25% reduction in run 
time, there is still tremendous room for 
improvement due to excessive object 
copying. 

With any Java non-primitive type, 
the statement "x = y" will cause the "x" 
label to point to the "y" object, and the 
previous "x" object (if any) will be lost. 
What remains is the "y" object with both an 
"x" label and a "y" label. In order to have a 
separate "x" object that is the same as the 
"y" object, an explicit copy or clone 
function must be used to duplicate the object 
(Flanagan 1997). This duplication is an 
expensive operation, as it instantiates a new 
object and copies the member data. 
Analysis   of   the   current   reactive   tabu 
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heuristic with the KL Group's JProbe™ Java 
profiler tool revealed that nearly 50% of the 
run time is spent copying NodeType objects. 
Initial experimentation using an index 
system as node pointers showed potential 
run times that are only 20% of the current 
run time—100 customer, 25 vehicle 
Solomon sets ran in -120 seconds versus the 
current -550 seconds. This speed increase 
results from copying and manipulating the 
indices,  which  are  Java  primitive  types, 

instead of copying  and manipulating the 
NodeType objects. 

Some initial work was done in an 
attempt to reconfigure the heuristic to run 
using indices, but the changes are substantial 
as they touch nearly every aspect of the 
program. Future programming efforts 
should make the conversion, which will 
allow faster solutions and larger problem 
sets. 
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Table 8. Bosnia Data Set 

Location Name Lat (DD MM SS) Lon (DD MM SS)  1  
e-, I ,■'    WiV JmaxOy 

DepotTazarHungary N 46 24 0 E 17 54 0 
CorridorSzulokHungary N 46 3 45 E 17 32 44 

CorridorSrbacBosnia* N 45 24 0 E 17 30 0 940 4800 0 0 
Dumdvga N 44 58 29 E 16 50 34 1015 1500 30 180 
Mastye N 44 58 46 E 16 38 56 1015 1500 30 180 
AAASiteGarred N 44 58 4 E 16 39 31 1015 1500 2 15 
HvyWpnDepTharmet N 44 58 33 E 16 39 18 1015 1500 2 30 
HvyWpnDepTharmet N 44 58 39 E 16 39 41 1015 1500 2 30 
HvyWpnDepTharmet N 44 58 59 E 16 39 28 1015 1500 2 30 
CommSiteSardona N 44 59 2 E 16 39 56 1015 1500 2 30 
CommSiteSardona N 44 59 11 E 16 40 19 1015 1500 2 30 
CommSiteSardona N 44 59 15 E 16 39 20 1015 1500 2 30 
SuspWpnStorage N 44 59 9 E 16 39 10 1015 1500 2 30 
SuspWpnStorage N 44 54 52 E 16 34 47 1015 1500 2 30 
SuspWpnStorage N 44 51 49 E 16 41 37 1015 1500 2 30 
SuspWpnStorage N 45 0 7 E 16 34 47 1015 1500 2 30 
SuspWpnStorage N 44 59 9 E 16 49 17 1015 1500 2 30 
SuspWpnStorage N 44 57 41 E 16 39 35 1015 1500 2 30 
SAMIADSiteProbSA2 N 44 57 23 E 16 51 45 1015 1500 2 30 
SAMIADSiteProbSA2 N 44 57 45 E 16 49 28 1015 1500 2 30 
SAMIADSiteProbSA2 N 44 55 57 E 16 43 52 1015 1500 2 30 
SAMIADSiteSiteRadar N 44 57 47 E 16 39 54 1015 1500 2 30 
HQSiteDromada N 45 0 7 E 16 53 49 1015 1500 30 120 
WarehouseDromada N 44 53 31 E 16 54 12 1015 1500 2 60 
BarracksOmanski N 44 45 34 E 17 10 34 1500 1715 5 120 
BarracksOmanski N 44 48 19 E 17 12 14 1500 1715 5 120 
BarracksOmanski N 44 51 2 E 17 13 24 1500 1715 5 120 
TankRallyPointBolstavec N 44 50 51 E 17 14 39 1500 1715 2 30 
TankRallyPointBolstavec N 44 56 17 E 17 17 41 1500 1715 2 30 
StorageBunkerKrajachastane N 44 55 51 E 17 17 51 1500 1715 2 30 
StorageBunkerKrajachastane N 44 56 7 E 17 18 23 1500 1715 2 30 
RoadGolprtuniy N 44 28 13 E 17 1 18 1730 1830 20 40 
RoadGolprtuniy N 44 27 29 E 17 1 46 1730 1830 20 40 
RoadGolprtuniy N 44 27 10 E 17 2 24 1730 1830 20 40 
Dumdvga N 44 58 29 E 16 50 34 1900 2300 30 180 
Mastye N 44 58 46 E 16 38 56 1900 2300 30 180 
AAASiteGarred N 44 58 4 E 16 39 31 1900 2300 2 15 
HvyWpnDepTharmet N 44 58 33 E 16 39 18 1900 2300 2 30 
HvyWpnDepTharmet N 44 58 39 E 16 39 41 1900 2300 2 30 
HvyWpnDepTharmet N 44 58 59 E 16 39 28 1900 2300 2 30 
CommSiteSardona N 44 59 2 E 16 39 56 1900 2300 2 30 
CommSiteSardona N 44 59 11 E 16 40 19 1900 2300 2 30 
CommSiteSardona N 44 59 15 E 16 39 20 1900 2300 2 30 
SuspWpnStorage N 44 59 9 E 16 39 10 1900 2300 2 30 
SuspWpnStorage N 44 54 52 E 16 34 47 1900 2300 2 30 
SuspWpnStorage N 44 51 49 E 16 41 37 1900 2300 2 30 
SuspWpnStorage N 45 0 7 E 16 34 47 1900 2300 2 30 
SuspWpnStorage N 44 59 9 E 16 49 17 1900 2300 2 30 
SuspWpnStorage N 44 57 41 E 16 39 35 1900 2300 2 30 
SAMIADSiteProbSAl N 44 57 23 E 16 51 45 1900 2300 2 30 
SAMIADSiteProbSA2 N 44 57 45 E 16 49 28 1900 2300 2 30 
SAMIADSiteProbSA2 N 44 55 57 E 16 43 52 1900 2300 2 30 
SAMIADSiteSiteRadar N 44 57 47 E 16 39 54 1900 2300 2 30 
HQSiteDromada N 45 0 7 E 16 53 49 1900 2300 30 120 
WarehouseDromada N 44 53 31 E 16 54 12 1900 2300 2 60 
CorridorSrbacBosnia N 45 24 0 E 17 30 0 940 4740 0 0 

DepotTazarHungary N 46 24 0 E 17 54 0 
CorridorSzulokHungary N 46 3 45 E 17 32 44 

1 Time listed in hours-minutes format. 
2 Minutes. 
* Optimization begins from Srbac Corridor waypoint 

(Bergdahl 1998) 
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Figure 9. Bosnia Scenario Target Locations 
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Table 9. Bosnia Tour Sequence 

Label ID Lat^ Long'1 Early4 Late4 Arr4 Dep4 Serv4 Air3 

CorridorSrbacBosnia 0 45.1166 -17.5416 580 2880 580.00 580.00 0 0 
HQSiteDromada 20 45.0019 -16.8969 615 900 606.25 615.00 30 0 
SAMIADSiteProbSA2 16 44.9563 -16.8625 615 900 647.66 647.66 2 0 
Dumdvga 1 44.9747 -16.8427 615 900 650.97 650.97 125 0 
SuspWpnStorage 14 44.9858 -16.8213 615 900 778.02 778.02 2 2 
SAMIADSiteProbSA2 17 44.9625 -16.8244 615 900 780.89 780.89 2 0 
SAMIADSiteProbSA2 IS 44.9325 -16.7311 615 900 786.88 786.88 2 0 
CommSiteSardona 8 44.9863 -16.6719 615 900 792.77 792.77 2 0 
CommSiteSardona 7 44.9838 -16.6655 615 900 795.05 795.05 2 0 
CommSiteSardona 9 44.9875 -16.6555 615 900 797.50 797.50 6 0 
SuspWpnStorage 10 44.9858 -16.6527 615 900 804.11 804.11 3 2 
HvyWpnDepTharmet 6 44.983 -16.6577 615 900 807.86 807.86 2 2 
HvyWpnDepTharmet 5 44.9775 -16.6613 615 900 810.05 810.05 2 2 
SAMIADSiteSiteRadar 19 44.963 -16.665 615 900 812.57 812.57 2 0 
SuspWpnStorage 15 44.9613 -16.6597 615 900 814.79 814.79 2 0 
AAASiteGarred 3 44.9677 -16.6586 615 900 817.14 817.14 2 0 
HvyWpnDepTharmet 4 44.9758 -16.6549 615 900 819.61 819.61 2 0 
Mastye 2 44.9794 -16.6488 615 900 821.93 821.93 30 0 
SuspWpnStorage 13 45.0019 -16.5797 615 900 855.02 855.02 19 2 
SuspWpnStorage 11 44.9144 -16.5797 615 900 878.36 878.36 2 2 
SuspWpnStorage 12 44.8636 -16.6936 615 900 883.24 883.24 2 1 
WarehouseDromada 21 44.8919 -16.9033 615 900 891.03 891.03 2 1 
TankRallyPointBolstavec 26 44.938 -17.2947 900 1035 903.71 903.71 2 2 
S torageB unkerKraj achastane 28 44.9352 -17.3063 900 1035 905.98 905.98 15 0 
StorageBunkerKrajachastane 27 44.9308 -17.2975 900 1035 921.88 921.88 2 0 
TankRallyPointBolstavec 25 44.8475 -17.2441 900 1035 928.56 928.56 2 0 
BarracksOmanski 24 44.8505 -17.2233 900 1035 931.42 931.42 15 2 
BarracksOmanski 23 44.8052 -17.2038 900 1035 949.23 949.23 5 0 
BarracksOmanski 22 44.7594 -17.1761 900 1035 956.77 956.77 5 2 
RoadGolprtuniy 31 44.4527 -17.04 1050 1110 977.93 1050.00 20 0 
RoadGolprtuniy 30 44.458 -17.0294 1050 1110 1070.52 1070.52 20 0 
RoadGolprtuniy 29 44.4702 -17.0216 1050 1110 1091.27 1091.27 22 0 
SuspWpnStorage 43 44.8636 -16.6936 1140 1380 1139.59 1140.00 13 0 
SuspWpnStorage 42 44.9144 -16.5797 1140 1380 1159.13 1159.13 2 0 
SuspWpnStorage 44 45.0019 -16.5797 1140 1380 1165.90 1165.90 2 2 
Mastye 33 44.9794 -16.6488 1140 1380 1169.55 1169.55 30 0 
SuspWpnStorage 41 44.9858 -16.6527 1140 1380 1199.91 1199.91 24 0 
CommSiteSardona 40 44.9875 -16.6555 1140 1380 1224.17 1224.17 2 2 
CommSiteSardona 39 44.9863 -16.6719 1140 1380 1226.56 1226.56 2 0 
CommSiteSardona 38 44.9838 -16.6655 1140 1380 1228.84 1228.84 21 0 
HvyWpnDepTharmet 37 44.983 -16.6577 1140 1380 1250.84 1250.84 2 2 
HvyWpnDepTharmet 36 44.9775 -16.6613 1140 1380 1253.03 1253.03 8 0 
HvyWpnDepTharmet 35 44.9758 -16.6549 1140 1380 1262.16 1262.16 2 2 
AAASiteGarred 34 44.9677 -16.6586 1140 1380 1264.44 1264.44 2 2 
SuspWpnStorage 46 44.9613 -16.6597 1140 1380 1266.67 1266.67 2 1 
SAMIADSiteSiteRadar 50 44.963 -16.665 1140 1380 1268.84 1268.84 2 2 
SAMIADSiteProbSA2 49 44.9325 -16.7311 1140 1380 1272.52 1272.52 2 2 
WarehouseDromada 52 44.8919 -16.9033 1140 1380 1278.57 1278.57 2 0 
SAMIADSiteProbSA2 47 44.9563 -16.8625 1140 1380 1284.55 1284.55 2 0 
SAMIADSiteProbSA2 48 44.9625 -16.8244 1140 1380 1288.13 1288.13 28 0 
SuspWpnStorage 45 44.9858 -16.8213 1140 1380 1318.38 1318.38 2 2 
Dumdvga 32 44.9747 -16.8427 1140 1380 1320.94 1320.94 30 1 
HQSiteDromada 51 45.0019 -16.8969 1140 1380 1353.14 1353.14 30 0 
CorridorSrbacBosnia 45.1166 -17.5416 580 2880 1401.57 — 0 — 

Parameters set as follows: maximum number of vehicles: m = 5; maximum iterations: k = 2500; reactive penalty scheme; 
LOT starting tour. Total runtime 108 seconds on a Pentium II 300 MHz system. 
By convention North latitudes are positive and South latitudes are negative. 
By convention, West longitudes are positive and East longitudes are negative. 
Time in minutes. 
Flight altitude to next point: "0" = 5,000 ft, "1" = 10,000 ft, "2" = 18,000 ft. 
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Figure 10. Bosnia Optimized Tour Route 
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Notation 

The following symbols appear in the main body of the paper and are defined as listed. 
For the sake of clarity, symbols appearing only in the appendices are defined when 
introduced. 

a, = arrival time at node i 
A = arc set 
A = line segment, wind adjustment triangle 
AS = airspeed 
B = line segment, wind adjustment triangle 
cij = cost (travel time) from node /toy 
C = line segment, wind adjustment triangle 
C, = excess vehicle capacity 
d = insertion move depth 
dj = departure time from node / 
djj = great circle distance between locations / andy 
D = maximum tour-length duration 
Di = excess route duration 
e-, = earliest begin service time of node i 
G = graph set 
GS = ground speed 
H = intermediate heading angle 
hijk = travel altitude k between locations / andy 
i = insertion move position 
k = altitude band 
k - iteration 
11 = latest begin service time of node i 

L = latitude 
LD = load overage violations 
m = number of vehicles 
n = number of customers 
qi = non-negative customer demand (quantity) of node i 
Q = vehicle capacity 
Si = customer service time of node i 
Smax(i) = maximum stochastic service time for location i 
Smin(i) = minimum stochastic service time for location i 
St = stochastic customer service time for location i 
t = arbitrary time within time window 
Uj = travel time from node i toy 
tic = number of load infeasible solutions in the previous ten iterations 
tjw = number of time window infeasible solutions in the previous ten iterations 
TW = time window violations 
thv{t) = tour hashing value 
v0 = initial depot node (TSP, VRP) 
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v, = additional nodes (TSP, VRP) 
V = vertex set 
Wi = wait time to commence at node i 
WS = wind speed 
Xjj = indicator variable denoting arc from node i toy is included in the tour 

Zf (t) = feasible objective function 

Z(t) = penalized objective function 

Z'f (t) = feasible UAV objective function 

Z\t) = penalized UAV objective function 

&ij = bearing from location /toy 
&ws = wind bearing 
¥/,- = random weight for arc i, j 
5 = course correction angle 
A. = longitude 
6 = tabu list length 
p = generic penalty scaling factor 
PLD = load capacity penalty scaling factor 
PTW = time window penalty scaling factor 
r = tour position 
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Appendix A. Extended Problem Formulation 

This appendix examines the formulation of the traveling salesman problem (TSP), 
multiple traveling salesman problem (MTSP), vehicle routing problem (VRP), and 
multiple-depot vehicle routing problem (MDVRP). It is provided for generality and 
thoroughness as these problem types have additional constraints which were not 
mentioned previously since they are intrinsicly modeled in the tabu search heuristic. For 
instance, based on the way the tabu search evaluates the neighborhood and swaps 
customers, no subtour breaking constraint is provided since it is impossible for the 
heuristic to construct a subtour. Notation and numbering of variables differs slightly 
from that presented in Chapter 2, as the notation there is tailored to the problem context. 

A.l Traveling Salesman Problem (TSP) 

The first problem class, and basis for the remaining types, is the traveling 
salesman problem (TSP). Begin by defining the TSP structure and objective as follows: 
Let G be our network with the set of nodes N, a set of branches A, and the associated non- 
negative branch costs of C = Cy. The objective of this problem is to form a tour spanning 
all the nodes beginning and ending at the origin (node 1), which yields the minimum total 
tour length or cost. In the most basic case, we assume that the costs are symmetric (Cy = 
Cß), but the problem can be asymmetric with no loss of generality. 
This can be represented as an assignment problem, where exactly one arc x-^ starts at node 
/, and exactly one arc xtj terminates at node j. Specifically, the problem is formulated as 
follows: 

Minimize Z(t) = }_,/_, cuxu (Al. 1) 

Where 

ll if arc ij is in the tour 
xij 

-\0 otherwise 
Subject to: 

1=1 
= *y = 1    0 = 1,2, ...,n) 

n 

1-1 

= aj = 1    0 = 1.2,. ...,») 

Where 

*=w* s, X.. 6 {0,1} V 

(A1.2) 

(Al.3) 

V 1,7 = 1,2,...,/!   . 

As  previously  mentioned,   additional  constraints   are   required  to  eliminate 
subtours. Adding the subtour breaking constraint to the assignment formulation prevents 
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subtours. The three standard ways to represent a subtour breaking constraint (Bodin et al. 
1983) are listed as follows: 

(1) S = < (xij:): ^ ^ xtj > 1 for every nonempty proper subset Q of N > 
[ >eß jeQ J 

(2) S = < [xy j'-^^Xjj < \R\ -1 for every nonempty subset R of {2,3,...,«} > 
{ ieR jeR J 

(3) S = ycy ): yi - y} + nx(>. < n -1 for 2 < / * j < n for some real numbers yi} . 

The first constraint requires that every node subset Q of the solution set be 
connected to all of the other nodes in the solution. The second constraint requires that the 
arcs in the solution set contain no cycles (a cycle over R nodes must contain li?l arcs. The 
third constraint is not intuitively straightforward and calls for more explanation. First, 
define y,- as follows: 

.th 11    if node / is visited on the t   step in a tour 

[O   otherwise 

For an arc in the solution tour (xu =1), the constraint becomes 

t-(t + l)+n<n-l  . 
For an arc not contained in the solution tour (xtj =0), the constraint reduces to 

y,. -y, <n-\   . 

The third representation has the advantage of adding only n2 -3«+ 2 subtour breaking 
constraints to the formulation, where the previous two add 2" constraints (Bodin et al. 
1983). 

A.2 Multiple Traveling Salesman Problem (MTSP) 

Adding more salesmen to the problem gives the next level of complexity, the 
multiple traveling salesman problem (MTSP). Let m be the number of salesmen or 
vehicles that make up the fleet. Again the objective is to minimize the total distance 
traveled. Assume further that the m salesmen depart from and return to the same depot 
and that each customer must be visited exactly once by exactly one salesman. 

With these changes, the formulation is an extension of the basic TSP presented 
above and is represented as 

(A2.1) 

(A2.2) 
,n 

n      n 

Minimize Z(t) = ^ X ci}xi} 
i-i j-\ 

Subject to: 

l-HM if  7 = 1 
if j = 2,3,. 
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,A \M      if   / = 1 

% \y        lf 7 = 2,3,... ,n 
where X = (*.. )e S,   x,y e {0,l}   V i,; = 1,2,...,n  . 

The first constraint in the formulation requires that all salesmen be used by 
forcing them to leave the depot. The second constraint requires all salesmen to return to 
the depot. Any one of the subtour breaking constraints used earlier in the TSP can be 
used for the MTSP. 

The apparent complexity of this new problem can be reduced by representing the 
MTSP as m copies of the single TSP. This is accomplished by creating dummy depots 
(D\,...,Dm) that are connected to the original network. These m copies are either separate 
from each other, or are connected with cost prohibitive big M arcs. When these single 
TSP copies are connected to a common depot, the problem becomes a series of m 
subtours, which when taken together forms the MTSP. This relatively straightforward 
transformation of the MTSP helps demonstrates why a TSP algorithm can be used to 
solve MTSP problems (Bodin et al. 1983). 

A.3 Vehicle Routing Problem (VRP) 

The next extension of the TSP is the Vehicle Routing Problem (VRP) which is 
obtained by adding a capacity constraint to the salesman or vehicles. In the VRP, a 
number of vehicles w leave a depot and service a number of customers n, each possessing 
a unique demand d{. Each vehicle v has a limited capacity Kv and a maximum route 
duration Tv that constrains their closed delivery routes, or return to depot time. This 
particular instance of the VRP is commonly known as the general vehicle routing 
problem (GVRP). If the maximum route lengths or range constraints are removed, then 
this problem is referred to as the standard vehicle routing problem (SVRP) (Bodin et al. 
1983). Additionally, the time required for a vehicle v to deliver or service at node i is st

v, 
the travel time for vehicle v from node i to nodey is u/, and finally Xjf = 1 if arc i-j is used 
by vehicle v. From this, the formulation of the GVRP is as follows: 

Minimize 2(1) = ^^^.^ (A3.1) 
,=1  7=1 v=l 

Subject to: 

ZZ4=1  0' = 2,...,K) (A3.2) 
;=i v=i 

n      w 

XZ^=1  0' = 2, ...,«) (A3.3) 
=1   v=l 

2X-2X-=°  (y=\,...,w;p=\,...,n) (A3.4) 
i = l y=l 

£4(i>P^v   (v=l,...,w) (A3.5) 
i=l 7 = 1 
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IXI^+II«^   (v=l,...,w) (A3.6) 

1X<1  (v=l,...,w) (A3.7) 

X^<1  (v=l,...,w) (A3.8) 
/ = 2 

where   X=(^)eS,  JE* e {0,l}  V i,j,v  . 

The objective function, which minimizes the overall distance, remains the same but is 
formulated to sum over all vehicles. Equations (A3.2) and (A3.3) require that every 
customer is visited by exactly one vehicle. It is assumed that a customer's demand does 
not exceed vehicle capacity and that each customer is fully serviced by the single vehicle 
that visits it. Equation (A3.4) requires continuity of our routes while (A3.5) maintains 
the vehicle capacity constraint. Since route length restrictions are represented with times, 
equation (A3.6) requires that maximum route duration is not exceeded. Finally, 
equations (A3.7) and (A3.8) limit the number of vehicles used. 

In addition to these equations, subtour breaking constraints, slightly modified 
from those used earlier in the TSP, must be included. Since it is the most efficient, the 
third subtour representation is selected for expansion as follows: 

S = \xjj : yj - yVj + nx]. < n -1 for 2 < i * j < n for some real numbers v,v} 

This applies the original subtour breaking constraint to each vehicle in turn. We 
note that some redundant constraints can be eliminated from the formulation above. 
Using (A3.2) and (A3.4) enforces (A3.3) automatically and makes it unnecessary (Bodin 
et al. 1983). Likewise (A3.4) and (A3.7) imply (A3.8) so this too can be eliminated from 
the formulation (Bodin et al. 1983). 

Finally, one common constraint added to the VRP is time windows. Let aj be the 
arrival time to node j, ej be the earliest delivery time allowable and /; be the no later than 
time for delivery. A nonlinear representation yields 

aj=HT^+si+t?xl    0' = 1>2,...,") (A3.9) 
v      i 

A, =0 (A3.10) 

e1<a1<l.1     {j = 2,...,n) . (A3.ll) 

If xl =0 then a} =0.  Otherwise a.j is the sum of the previous arrival time (a, = 0), the 

service time at node i (^,v), and the travel time from / to j (fVj).  Alternatively the linear 

representation of time windows constraint (Bodin et al. 1983) can be used in the 
formulation 

aj>(ai+S;+ri-(l-x^T:J 

«^fa + ^v+^)+(i-4>Ct, 
for all i\ ;>  . (A3.12) 
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When xjj = 1, the second half of the equation is eliminated and a; is determined 

from the previous arrival time, previous service time, and the travel time between the 
nodes. When xl = 0, the constraints are redundant. 

>j 

A.4 Multiple Depot Vehicle Routing Problem (MDVRP) 

Expanding the previous GVRP to account for multiple depots, or bases of 
operation, gives the multiple depot VRP. This problem can be formulated with only 
minor changes. Let M be the number of depots in our problem. First the original VRP 
formulation indexes are changed for equation (A3.2), (j = M + 1, ... , n), and equation 
(A3.3), (i = M + 1, ... , n). Next the constraints (A3.7) and (A3.8) are changed to sum 
over all the depots individually to require that the number of vehicles used does not 
exceed the number of vehicles available. 

M        n 

X 2>,;;<i        (v=i,...,W) 
,=1 j=M+\ 

M       n 

X|>;<i (v=i,...,w) 
p=\ i=M+\ 

The MDVRP also requires an adjustment to the subtour breaking constraint. 
Again, only one is required (Bodin et al. 1983). 
(1) S = {(XJJ): ^^*,y ^1    for every nonempty proper subset Q of {1, 2, ... , n) 

containing nodes 1,2, ... ,M}; 
(2) 5 = {(xij): ^ ^ Xy < |/?j — 1  for every nonempty subset R of {M +1, M+2 , ... , n}}; 

ieR jeR 

(3) S = {(xij): y, - y . + nxtj <n-\  fovM+l<i^j<n for some real numbers y,}  . 
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Appendix B. Tabu Search vs. Other Heuristics—TSP Example 

Objective: Minimize distance, d 

Initial Order, d= 3138 

Global Greedy, d = 2238 

Nearest Neighbor, d= 2108 

Tabu Search, of =1830 

Nari Data Set (Sisson 1997) 
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